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PV → signature of the weak interaction, in the strong

interaction parity is conserved.

Expected asymmetry Aγ  ≈  - 5 x 10-8

Goal experimental error  ≤  0.5 x 10-8

Aγ is a clean measurement of        since

2-body system - no nuclear structure uncertainties

                     Aγ ≈ - 0.045
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The NPDGamma studies weak interaction between neutrons and protons in
the                        (2.2 MeV) reaction. The experiment will measure Aγ , the
parity-violating asymmetry in the distribution of emitted γ’s
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Weak Interaction

• Standard model specifies well how point like leptons and quarks
interacting weakly by exchanging a weak boson; W+, W-, Z0, ....

• We do not have a good picture of the weak interaction between hadrons.
• The strong interaction binds nucleons together to form nuclei, and is thus

the primary interaction between protons and neutrons. Nucleon
interactions take place on a scale of 1/mπ ≈ 1.5 fm, short range repulsion.

• The masses of the weak bosons are large and therefore their Compton
wavelengths are in range of 1/MW  ≈  10-3 fm which is very small compared
to the distances characterizing low-energy N-N interactions.

At low energies weak interaction between nucleons
cannot be explained by a simple Z or W - exchange.
The picture is complicated by strong interaction.

    The ratio of weak and strong amplitudes is
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Low-Energy Hadronic Weak Interaction: ∆I=1 neutral current component

• At low energies hadronic weak interaction can be considered as a point
      interaction of two currents; the charged and neutral weak currents

• From isospin structure of the weak interaction for strangeness conserving ∆S
= 0 part is obtained:
– Charged current weak N-N interaction components are ∆I = 0 and 2 but
     not to ∆I = 1.
– Neutral currents components are ∆I = 0, 1, 2.

⇒ The neutral current should dominate the isospin ∆I = 1 channel.
⇒ Aγ  in                         is a measure of the ∆S = 0, ∆I = 1 part of the hadronic
      weak interaction and thus neutral current part of the interaction.
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The main goals of the experiments are:
•  to isolate the neutral current and
•  to understand the mechanism by which the weak force is
   communicated over the long distances of N-N interactions.



The Low-Energy N-N Weak Interaction: one-meson exchange model

The low-energy N-N weak interaction is conventionally
described in a one - meson - exchange model, where
one meson - nucleon vertex is weak and the other
strong. This long - distance mechanism dominates at
nuclear densities.
The six weak PV couplings;

characterize the strengths of
                 isovector π
    isoscalar/isovector/isotensor ρ
           isoscalar/isovector ω
weak meson-nucleon couplings.
Measured in various combinations by a variety of
observables.
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1                          . The π± carries the important long-range part of the hadronic

weak interaction, just as it does for the strong interaction.
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Simple Level Diagram of n-p System;                       is primarily
sensitive to the ∆I = 1 component of the weak interaction

Low-energy
continuum states

Bound states
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•  Weak interaction mixes in P waves to the singlet and
   triplet S-waves in initial and final states.
•  Parity conserving transition is M1.
•  Parity violation arises from mixing in P states  and
    interference of the E1 transitions.
•  Aγ is coming from 3S1 - 3P1 mixing and interference of
   E1-M1transitions - ∆I  = 1 channel.

Mixing amplitudes:
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The                        Experiment is Designed for the
LANSCE Pulsed Cold Spallation Neutron Source
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The goal experimental error of
0.5 x 10-8  is a challenge for a polarized
cold neutron flux from a spallation
source as well as for the control of
systematic errors.

– Some 4 x 1017 neutrons are
required for statistics.

– Neutron time-of-flight used to
design the experiment with
systematic errors less than

     0.5 x 10-8.

The flight path 12 at LANSCE has a peak flux of 2x107 n/cm2/s at about 8 meV.
Neutron pulse rate is 20 Hz → TOF frame = 50 ms.
To reach the statistics of 0.5 x 10-8  eight months of running is needed.
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       guide with 150 µA proton current



NPDGamma Experimental Setup

B0=10 gauss
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3He neutron spin filter:
• In a 3He cell Rb atoms are polarized by

laser light. Through spin exchange 3He
gas is nuclear polarized.

• Cross section of the n-3He singlet state
is much larger than the triplet state.

• Therefore, neutrons with spin
antiparallel with 3He spins are absorbed
and neutrons with spin parallel with 3He
spins are transmitted → neutron spin
filter

Neutrons Polarized by Optically-Polarized 3He Spin Filter
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3He Spin-Filter Setup

• Large area, 11 cm in dia, 3He cells are
required to cover the beam.

• 3He spin filter allows a compact
experimental setup.

• 3He spin filter offers an extra spin flip
without a change of the B field.

A 11-cm in diameter cell has T1> 500
hr. 3He polarization 52% has been
measured.

100 W light at 795 nm



RF Neutron Spin Flipper: spin reversal in
broad neutron energy range

• Neutron spin is guide by a B0 = 10 gauss field.
• Magnetic gradients has to be < 1 mgauss/cm  -  no

Stern-Gerlach steering → false asymmetry
• RF spin flipper (RFSF) is the main control of

systematic errors. Spin flip at 20 Hz.
• Magnetic field fluctuations less then 20 mgauss.
• Spin reversal with a RF field.

– En in is proportional to 1/(tof)2

– At resonance a tilt angle of the spin is Θ = γΒ1∆t
– To precess a neutron spin by Θ = π 
                B1= ( πL_γd_(__tof)
– Spin-flip efficiency > 95% achieved.

Other spin flips are guide field or 3He poalrization



RF Spin Flipper; spin-flip efficiency



20-liter Liquid Para-Hydrogen Target

• To maintain neutron spin in
scattering a para- hydrogen target is
required.

• The 30 cm in diameter and 30 cm
long target captures 60% of incident
neutrons.

• At 17 K only 0.05% of LH2 is in
ortho state → 1% of incident
neutrons will be depolarized.

• Target cryostat materials selected so
that false asymmetries < 10-10.

ortho

para

capture

Neutron mean free paths at 4 meV in
- ortho-hydrogen is λ ≈ 2 cm,
- para-hydrogen is λ ≈ 20 cm
- for a n-p capture is λ ≈ 50cm.



A safe 20-liter Liquid Para-Hydrogen Target



CsI(Tl) Gamma Detector

• Up-down γ − asymmetry will be measured.
• The detector has to be aligned with the B0

guide field better than 20 mrad.
• CsI(Tl) was selected because of :

– large number of photoelectrons,
    measured >1000/MeV γ-ray
– interaction length of a 2.2-MeV γ-ray

in CsI is about 5 cm → 95% of γ’s will
be stopped in 15 cm.

• The gamma detector has 48 CsI modules -
15 x 15 x 15 cm3. Total of 0.7 metric ton of
CsI(Tl). 48 CsI(Tl) detectors have been

received and are under testing.



CsI(Tl) Gamma Detector

Detector solid angle is ≈ 3π.



Current Mode Detection with Vacuum Photo Diodes

• Rates are about 1010 γ/s → current mode detection.
• Light from CsI(Tl) is detected by 3” vacuum photodiodes which have S20

photocathodes.
– vacuum photodiode linearity  <  10-4  and
– magnetic field sensitivity  < 10-4/G  and < 10-5/G2

• Vacuum photodiode has a gain of 1 → a high-gain low-noise I → V
preamplifier is required.

• In the current mode detection statistical fluctuations (counting statistics)
appear as a shot noise in photodiode current.

• RMS of the shot noise current density is                                                    ≈
5 pA/√Hz per detector.
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Counting statistics vs electrical noise

• Sources of noise; Johnson noise in Rf, current and voltage noises in the
op amp input, and photocathode dark current

• If Rf = 60 MΩ then the total calculated equivalent noise at the input is
19 fA/√Hz dominated by Rf.

• Noise value measured from the circuit is about 20 fA/√Hz.
                →  counting statistics/noise ≈ 250.
• Counting statistics rules the run time.
• To measure beam-off false asymmetry to 0.5 x 10-8  beam-off time of
      a few minutes is needed.
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n+p->d+γ Experiment Layout



Systematic Errors

• Physics - correlated with neutron spin:
– activated materials - emit γs in β-decay
– Stern-Gerlach steering
– L-R asymmetry

• n - p elastic scattering
• n - p parity allowed asymmetry
• Mott-Schwinger scattering

• Instrumental sources
– electronics, stray magnetic fields, gain

stability

• Monitoring:
– Null test at En > 15 meV and at end of each

pulse.



Summary

• The                         reaction is the most sensitive way to isolate the neutral
current component in the hadronic weak interaction and to determine        .

• With pulsed cold neutrons Aγ can be measured with the statistical precision
of 5 x 10-8

– In situ control of systematic errors by TOF information.
• The                         experiment will use 3He neutron spin filter, RF spin

flipper, and current mode detection.
• Commissioning of the experiment will start in spring 2003.
• An interesting follow-up experiment could be                       .  
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